Fast left ventricle tracking in CMR images using localized anatomical affine optical flow
نویسندگان
چکیده
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.
منابع مشابه
Fast Tracking of the Left Ventricle Using Global Anatomical Affine Optical Flow and Local Recursive Block Matching
Reference values and error metrics Both end-diastolic and end-systolic frames were manually contoured by 3 experts, who have further edited their contours until consensus among the three manually edited LV surfaces was achieved. The global morphological and functional parameters were estimated from the mean surfaces from the 3 experts contours, as well as surface error metrics. III. Experiments...
متن کاملVolume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping
BACKGROUND Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim...
متن کاملAutomated Detection of Left Ventricle in 4D MR Images: Experience from a Large Study
We present a fully automated method to estimate the location and orientation of the left ventricle (LV) in four-dimensional (4D) cardiac magnetic resonance (CMR) images without any user input. The method is based on low-level image processing techniques incorporating anatomical knowledge and is able to provide rapid, robust feedback for automated scan planning or further processing. The method ...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کامل3D Ultrasound Tracking of the Left Ventricles Using One-Step Forward Prediction and Data Fusion of Collaborative Trackers
Tracking the left ventricle (LV) in 3D ultrasound data is a challenging task because of the poor image quality and speed requirements. Many previous algorithms applied standard 2D tracking methods to tackle the 3D problem. However, the performance is limited due to increased data size, landmarks ambiguity, signal drop-out or non-rigid deformation. In this paper we present a robust, fast and acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015